Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles

نویسندگان

  • Yulong Wang
  • Limin Wang
  • Zhenhe Su
  • Juanjuan Xue
  • Jinbo Dong
  • Cunzheng Zhang
  • Xiude Hua
  • Minghua Wang
  • Fengquan Liu
چکیده

We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV-vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV-vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Colourimetric Assay for Lead Detection Using Label-Free Gold Nanoparticles (AuNPs)

A sensitive colourimetric method for lead (PbII) detection is reported in this paper using a common tripeptide, glutathione (GSH), and label-free gold nanoparticles (AuNPs). A limit of detection of 6.0 ppb in water was achieved and the dynamic linear range was up to 500 ppb. Selectivity over fourteen potential interfering metal ions was tested and most of these metal ions do not interfere with ...

متن کامل

Adsorption of Copper(II) from an Wastewater Effluent of Electroplating Industry by Poly(ethyleneimine)-Functionalized Silica

The poly(ethyleneimine)-functionalized silica has been developed successfully as an effective adsorbent for the adsorption removal of Cu(II) ions from electroplating wastewater. The influences of pH, contact time and initial concentration of Cu(II) ions on the adsorption capacity and the effect of adsorbent dosage on the removal efficiency of Cu(II) ions from electroplatin...

متن کامل

Elimination of Copper (II) Ions from Aqueous Solution by the using of gamma alumina nanoparticles

heavy metals, as gamma alumina nanoparticles pollutants, in water resources. Therefore, the purpose of this paper was to evaluate the removal of copper (II) ions from aqueous solutions using gamma alumina nanoparticles as a adsorbent. Batch adsorption studies carried out to study various parameters included contact time, initial concentration of copper (II) ions, pH, and gamma alumina nanoparti...

متن کامل

Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles.

A spectrophotometric method for the detection of tyrosinase activity is developed by utilizing the product-triggered aggregation of boronic acid-functionalized gold nanoparticles. Based on the changes of absorbance in UV-visible spectra, the assay shows extremely high sensitivity and lowered limit of detection of 1 × 10(-10) u mL(-1).

متن کامل

Visual and on-site detection of mercury(II) ions on lateral flow strips using DNA-functionalized gold nanoparticles.

A test strip for detection of Hg(2+) in aqueous solution based on the DNA-functionalized gold nanoparticles (DNA-AuNPs) was developed and evaluated. When Hg(2+) ions were introduced, the biotinylated DNA(2) hybridized with thiolated DNA(1) functionalized on the AuNPs (DNA(1)-AuNPs) to form mismatch complexes through thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination. The formed mismatch complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017